CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process
Inverter Cross-section

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors

Well and Substrate Taps

- Substrate must be tied to GND and n-well to \(V_{DD} \)
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps
Inverter Mask Set

- Transistors and wires are defined by *masks*
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal
Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO$_2$ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO$_2$

Oxidation

- Grow SiO$_2$ on top of Si wafer
 - 900 – 1200 C with H$_2$O or O$_2$ in oxidation furnace
Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist
Etch

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn’t melt in next step
n-well

- n-well is formed with diffusion or ion implantation
- **Diffusion**
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- **Ion Implantation**
 - Blast wafer with beam of As ions
 - Ions blocked by SiO$_2$, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps
Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)

- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

- Use same lithography process to pattern polysilicon
Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted.
- N-diffusion forms nMOS source, drain, and n-well contact.

N-diffusion

- Pattern oxide and form n+ regions.
- *Self-aligned process* where gate blocks diffusion.
- Polysilicon is better than metal for self-aligned gates because it doesn’t melt during later processing.
Historically dopants were diffused

Usually ion implantation today

But regions are still called diffusion

N-diffusion cont.

Strip off oxide to complete patterning step

N-diffusion cont.
P-Diffusion

- Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed
Metalization

- Sputter on aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size $f = \text{distance between source and drain}$
 - Set by minimum width of polysilicon
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of $\lambda = f/2$
 - E.g. $\lambda = 0.3 \, \mu\text{m}$ in 0.6 μm process
Simplified Design Rules

- Conservative rules to get you started

Inverter Layout

- Transistor dimensions specified as Width / Length
 - Minimum size is $4\lambda / 2\lambda$, sometimes called 1 unit
 - In $f = 0.6 \mu m$ process, this is 1.2 μm wide, 0.6 μm long
Summary

- MOS Transistors are stack of gate, oxide, silicon
- Can be viewed as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors

- Now you know everything necessary to start designing schematics and layout for a simple chip!